Symmetry in Quantum Walks
نویسندگان
چکیده
A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various coins and decoherence models. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Symmetries of a graph, given by its automorphism group, can be inherited by the evolution operator. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. Symmetry can cause the walk to also be confined to a subspace of the original Hilbert space for cartain initial states. We show that a quantum viii walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. We conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speed-up. Finally, we use symmetry and the theory of decoherence-free subspaces to determine when the subspace of the quotient graph is a decoherence-free subspace of the dynamics.
منابع مشابه
Limit theorems and absorption problems for quantum random walks in one dimension
In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by 2 × 2 unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.
متن کاملCharacterizing graph symmetries through quantum Jensen-Shannon divergence.
In this paper we investigate the connection between quantum walks and graph symmetries. We begin by designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon d...
متن کاملNoninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs
We investigate the quantum dynamics of particles on graphs (“quantum random walks”), with the aim of developing quantum algorithms for determining if two graphs are isomorphic (related to each other by a relabeling of vertices). We focus on quantum random walks of multiple noninteracting particles on strongly regular graphs (SRGs), a class of graphs with high symmetry that is known to have pair...
متن کاملTwo-particle quantum walks applied to the graph isomorphism problem
We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally different in the context of solving a particular computational problem. Specifically, we consider the graph isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each other by a relabeling of the graph vertices), and focus on a class of graphs wit...
متن کامل